Package: gWQS 3.0.5
gWQS: Generalized Weighted Quantile Sum Regression
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
Authors:
gWQS_3.0.5.tar.gz
gWQS_3.0.5.zip(r-4.5)gWQS_3.0.5.zip(r-4.4)gWQS_3.0.5.zip(r-4.3)
gWQS_3.0.5.tgz(r-4.4-any)gWQS_3.0.5.tgz(r-4.3-any)
gWQS_3.0.5.tar.gz(r-4.5-noble)gWQS_3.0.5.tar.gz(r-4.4-noble)
gWQS_3.0.5.tgz(r-4.4-emscripten)gWQS_3.0.5.tgz(r-4.3-emscripten)
gWQS.pdf |gWQS.html✨
gWQS/json (API)
# Install 'gWQS' in R: |
install.packages('gWQS', repos = c('https://renzetti.r-universe.dev', 'https://cloud.r-project.org')) |
- tiwqs_data - Measurement of 38 nutrients
- wqs_data - Exposure concentrations of 34 PCB
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:c189db1b18. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | OK | Nov 11 2024 |
R-4.5-linux | OK | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Exports:gwqsgwqs_barplotgwqs_boxplotgwqs_fitted_vs_residgwqs_levels_scatterplotgwqs_multinomgwqs_rankgwqs_ROCgwqs_scatterplotgwqs_summary_tabgwqs_weights_tabgwqsrhselectdatavars
Dependencies:abindbackportsbase64encbookdownbootbroombslibcachemcarcarDataclicodetoolscolorspacecommonmarkcowplotcpp11crayondata.tableDerivdigestdoBydplyrevaluatefansifarverfastmapfontawesomeFormulafsfuturefuture.applygenericsggplot2ggrepelglobalsgluegridSVGgtablehighrhtmltoolshttpuvisobandjquerylibjsonlitekableExtraknitrlabelinglaterlatticelifecyclelistenvlme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivparallellypbkrtestpillarpkgconfigplotROCplyrpromisespsclpurrrquantregR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrlistrmarkdownrstudioapisassscalesshinysourcetoolsSparseMstringistringrsurvivalsvglitesystemfontstibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunXMLxml2xtableyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Fitting Weighted Quantile Sum regression models | gwqs gwqsrh gwqs_multinom |
Plots and tables functions | gwqs_barplot gwqs_boxplot gwqs_fitted_vs_resid gwqs_levels_scatterplot gwqs_rank gwqs_ROC gwqs_scatterplot gwqs_summary_tab gwqs_weights_tab selectdatavars |
Methods for gwqs objects | coef.gwqs fitted.gwqs predict.gwqs print.gwqs print.summary.gwqs residuals.gwqs summary.gwqs vcov.gwqs |
Measurement of 38 nutrients (NHANES dataset) | tiwqs_data |
Exposure concentrations of 34 PCB (simulated dataset) | wqs_data |